

Successful Stand Establishment

Autumn Barnes Agronomy Specialist, Southwest Prairies Canola Council of Canada

KEEP IT COMING

How to optimize canola establishment?

- Set targets
- Take care when seeding
- Evaluate stand & practices
- Protect your stand
- Re-evaluate & make plans for next year

Set Targets

5-8 plants/ft² 75% emergence

MORE plants = wasted seed

- Crowding = self thinning, lodging
- Unrealized profit

Corcanola council Target 5-8 UNIFORM plants/ft²

LESS plants = <u>more risk</u>

- Yield potential & yield stability 4 below 3-4 plants/ft²
- Thin/bare patches = weeds, flea beetles, wasted inputs
- Branchy plants = longer & more variable DTM

Uniformity especially important when plant densities low

Non-uniformity x low density =

Control what you can: residue management, fertility rates & application, packing pressure

Why does survival matter?

hutterstock.com • 45014608

Scenario:

6 plants/ft² target, <u>5 gram TSW</u>, \$13/lb seed cost

Seeding rate & seed cost:

- A. 50% emergence = 5.8 lbs/ac, \$75.40/ac
- B. 60% emergence = 4.8 lbs/ac, \$62.40/ac \$13/ac savings
- C. 75% emergence = 3.8 lbs/ac, \$49.40/ac \$26/ac savings

www.canolacalculator.ca

Metric/Imperial conversion

- 4 gram TSW = 113 thousand seeds/lb
- 5 gram TSW = 92 thousand seeds/lb
- 6 gram TSW = 77 thousand seeds/lb

How to hit 75% emergence?

- Pre-seed
 - Develop goals to measure yourself against
 - www.canolacalculator.ca
 - Harvest residue distribution
 - Optimize soil P long term
 - Improve record keeping to avoid herbicide carryover
 - Maintain/replace ineffective equipment

Take care when seeding

Before you leave the shop

- Running through the seed drill ٠
 - Checking Openers: Worn or Okay?
 - Air Seals on Tanks
 - Rotate the hoses
 - Front to back and side to side leveled
 - Packer pressure

Poor Establishment

% Avg Precip: March 10 – June 10, 2019

2 C = 41 F 8 C= 46.4

Germination over Time

Soil Temperature

- Measure & average over minimum of three days (Temps taken at 1" at 7-9 AM and 4-6 PM)
- Canola can imbibe water and germinate at 2°C (36°F) BUT:
 - Growth rate will decrease
 - Emergence % compromised
 - Clock ticking on seed treatment
 - Optimum soil temp is 10°C (50 F)
 - A good starting point is 5°C (41 F)

Question: What is the ideal speed of seeding?

Answer:

The speed that ensures that the majority of seed is placed in the $\frac{1}{2}$ to 1" layer below the press wheel furrow giving adequate separation between fertilizer and seed.

How fast is too fast?

Note Seed in Fertilizer Row

Source: Canola Council of Canada

Stubble disturbance @ 4.1 mph

Stubble disturbance @ 5.0 mph

Stubble disturbance @ 6.2 mph

Effect of seeding depth on plant population

How to hit 75% emergence?

- Time of seeding
 - Seed into 5 C (41 F) or higher, 0.5-1" deep
 - Seed into moisture, adjust packing pressure
 - Calibrate frequently
 - Check placement/separation frequently, adjust speed
 - Follow safe rates of seed-placed fertilizer
 - Use premium seed treatments?

Evaluate Plant Stand

Surveyed canola density

Source: Julia Leeson AAFC 2018

52⊮ 2025

KEEP IT COMING

Fields with patches of sub-optimal canola density

Source: Julia Leeson AAFC 2018

52⊮ 2025

KEEP IT COMING

Protect Seedlings

Low/Variable Population?

- Longer & more variable canopy closure & maturity
- Insect thresholds may be lower
- Increased weed pressure
 - Budget for extra weed control

Dandelion Germination

T. Górski. 1975. Germination of seeds in the shadow of plants. Physiol. Plant 34:342-346 - rhubarb, rye, barley, dense currant, and wild shrubs canopies

- Cold, dry = slow plant growth
 - Feeding on underside of leaves
 & stems
 - Wind
- Warm, calm = active feeding & active growing
 - Tops of leaves
 - Poor establishment = worse

f

g

80%

30%

Re-evaluate stand & plan for next year

Herbicide residue risk?

- Fields with history of Group 2, 4, 5 or 15
 - Check labels not all are residual or have action on canola
- Normal biological activity inhibited
 - Dry, cool, low OM, pH
- Herbicide stacking?
- CHECK LABEL for re-cropping intervals

Photo: Autumn Barnes 2018

Questions?

Autumn Barnes barnesa@canolacouncil.org 403-360-0206

KEEP IT COMING